Question	Answer	Marks	Guidance
1(a)	high melting point/mp/mpt OR high boiling point/bp/bpt; poor/non conductor (when liquid and/or solid);	3	I mpt/bpt above room temp
(b)	(good) conductor when solid (and liquid);	2	A (good) conductor in any state/both states I high melting point/boiling point R low melting point/boiling point
(c)	melting point/–7 (°C) is below room temperature/25 (°C)/RTP ora; boiling point/59 (°C) is above room temperature/25 (°C)/RTP ora;	3	I low melting point/boiling point/conductivity 25 (°C)/room temperature/RTP is in between -7 (°C) and 59 (°C) OR 25 (°C)/room temperature/RTP is between mpt and bpt would both score the 2 evidence marks
(d)	high melting point/mp/mpt OR high boiling point/bp/bpt;		A melting point and boiling point both above room temp/25°C/RTP
	BOTH poor/non conductor when solid and good conductor when liquid OR molten/only conduct when liquid;	3	I conducts when aqueous or in solution I conducts in liquid due to free electrons

Question	Answer	Marks	Guidance
2(a)(i)	3;	1	
1(a)(ii)	₂ O ₃ ;	1	As ₂ O ₅
1(a)(iii)	4;	1	
(lb()(i)	3 .	1	
1(b)(ii)	2+,	1	
(b)(iii)	+.	1	
(c)	M1 2 double bonds, one between each O and the C atom; M2 each O has 8 outer electrons; M3 each C has 8 outer electrons;	3	R wrong symbols for O for M2 R wrong symbols for C for M3 I missing symbols A any combination of x and o

3 (a (i) $6Li + N_2 = 2Li_3N$ species (1) balancing (1)

(ii) N³ ion drawn correctly [1]

Charges correct (minimum 1 × Li ion and 1 nitride ion) [1]

(b) $3 \times \text{shared pairs between N and } 3 \times \text{F}$ [1]

only 2 non-bonding electrons on N, 6 non-bonding electrons on each F (COND on first point) [1]

(ii) Strong attractive forces/strong ionic bonds in lithium nitride [1]

weak (attractive) forces between molecules in NF₃ [1]

[Total: 8]

(a (i) incomplete combustion or limited oxygen/less oxygen/not enough oxygen (1) [1] (ii) any two from: (forward) reaction is endothermic (1) high temperature increases yield/favours forward reaction/shifts equilibrium to right (1) faster reaction (rate) (1) [2] (iii) any two from: high pressure reduces yield **or** favours LHS (1) because LHS has smaller volume or number of moles/number of molecules (of gas) ORA (1) (high pressure plant is) expensive/dangerous/explosion/leaks [2] 5 (b hydrogen and chlorine/ H_2 and Cl_2 (1) sodium hydroxide/NaOH/Na⁺OH (1) $2H^{+} + 2e \rightarrow H_{2}/2H^{+} \rightarrow H_{2} - 2e$ (1) $2Cl \rightarrow Cl_2 + 2e/2Cl - 2e \rightarrow Cl_2$ (1) Hydrogen/ $H_2/H/H^{\dagger}$ at cathode **and** chlorine/chloride/ $Cl_2/Cl/Cl$ at anode (1) [5] 5 (c each chlorine 1 bond pair and 3 non-bond pair (1) oxygen atom 2 non-bond pairs and 2 bond pairs as double bond (1) carbon atom 4 bond pairs including 2 bond pairs as double bond (1) [3] [Total: 13]

5 ((a	(i)	any ambiguous formula, e.g. GeH ₃ -GeH ₂ -GeH ₃	[1]
		(ii)	Ge _n H _{2n+2} NOT C instead of Ge	[1]
	(b)	СО	rect formula ND 4bps around germanium atom ND 3nbps and 1bp around each chlorine atom	[1] [1]
((c)	two	r oxygen atoms around each germanium atom germanium atoms around each oxygen atom ahedral	[1] [1]
	(d)		dation ND increase in oxidation number	[1] [1]

ACCEPT: electron loss